Parallel genetic changes and nonparallel gene-environment interactions characterize the evolution of drug resistance in yeast.

نویسندگان

  • Aleeza C Gerstein
  • Dara S Lo
  • Sarah P Otto
چکیده

Beneficial mutations are required for adaptation to novel environments, yet the range of mutational pathways that are available to a population has been poorly characterized, particularly in eukaryotes. We assessed the genetic changes of the first mutations acquired during adaptation to a novel environment (exposure to the fungicide, nystatin) in 35 haploid lines of Saccharomyces cerevisiae. Through whole-genome resequencing we found that the genomic scope for adaptation was narrow; all adapted lines acquired a mutation in one of four late-acting genes in the ergosterol biosynthesis pathway, with very few other mutations found. Lines that acquired different ergosterol mutations in the same gene exhibited very similar tolerance to nystatin. All lines were found to have a cost relative to wild type in an unstressful environment; the level of this cost was also strongly correlated with the ergosterol gene bearing the mutation. Interestingly, we uncovered both positive and negative effects on tolerance to other harsh environments for mutations in the different ergosterol genes, indicating that these beneficial mutations have effects that differ in sign among environmental challenges. These results demonstrate that although the genomic target was narrow, different adaptive mutations can lead populations down different evolutionary pathways, with respect to their ability to tolerate (or succumb to) other environmental challenges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Epigenetics in Cancer Drug Resistance

Cancer is caused by aberrant genetic and epigenetic changes in genes expression. DNA methylation, histone modification, and microRNAs gene deregulation are the most known epigenetic changes in different stages of cancer. Since every tumor has its own specific epigenome, any abnormal pattern is a potential biomarker for classification of different types of tumors. Despite, tumorigenesis, abnorma...

متن کامل

Mapping and Expression Analysis of a Fusarium Head Blight Resistance Gene Candidate Pleiotropic Drug Resistance 5 (PDR5) in Wheat

Fusarium head blight (FHB) caused by Fusarium graminearum is a serious disease of wheat (Triticum aestivum L.), through which grain quality losses are induced by fungal trichotecene mycotoxins such as deoxynivalenol (DON). A class of plasma membrane localized ABC transporter proteins related to the yeast PDR5 (pleiotropic drug resistance5) efflux pump seems to be responsible for partial resista...

متن کامل

RNAi Induced Inhibition of MRP1 Expression and Reversal of Drug Resistance in Human Promyelocytic HL60 Cell Line

Multidrug resistance (MDR) is a complex phenomenon in which many different genes regulating drug transport, cellular repair, detoxification and drug metabolism are involved. Nevertheless, in most drug resistant cell lines and cancer patients up-regulation of ABC-transporter genes such as MDR associated Protein (MRP1) gene could be at the basis of the drug resistance phenotype. We aimed to decre...

متن کامل

A Comparison of Case-Control and Case-Only Designs to Investigate Gene-Environment Interactions Using Breast Cancer Data

Background: The traditional methods of studying the gene-environment interactions need a control group. However, the selection of an appropriate control group has been associated with problems. Therefore, new methods, such as case-only design, have been created to study such interactions. The objective of this study was to compare the case-only and case-control designs using data from patients ...

متن کامل

The Association Between Genetic Variants in Extended Spectrum Beta-Lactamases and AmpC-producing Gram-Negative Bacilli and Antibiotic Resistance

Background and Objective: A large group of genes associated with extended-spectrum beta-lactamases (ESBL) and AmpC expression is involved in inducing antibiotic resistance in various bacteria. Identifying these genes and assessing their harboring will be crucial in determining the pattern of antibiotic resistance. This study aimed to characterize genetic variants in extended-spectrum beta-lacta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 192 1  شماره 

صفحات  -

تاریخ انتشار 2012